

Declaration Owner

Milliken

920 Milliken Road Spartanburg, SC 29303 United States

+1-800-241-4826 | https://floors.milliken.com.

Product

Flexform Standard 5mm Luxury Vinyl Tile

Functional Unit

The functional unit is one square meter of floor covering provided and maintained for a period of 60 years.

EPD Number and Period of Validity

SCS-EPD-07449

EPD Valid November 24, 2021 through November 23, 2026

Product Category Rule

Product Category Rule (PCR) for preparing an Environmental Product Declaration (EPD) for Flooring: Carpet, Resilient, Laminate, Ceramic, Wood. NSF International. Version 2. 2014. Extended June 2020.

Program Operator

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608

+1.510.452.8000 | www.SCSglobalServices.com

Declaration Owner:	Milliken	
Address:	920 Milliken Road, Spartanburg, SC 29303, United States	
Declaration Number:	SCS-EPD-07449	
Declaration Validity Period:	EPD Valid November 24, 2021 through November 23, 2026	
Program Operator:	SCS Global Services	
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide	
LCA Practitioners:	Jeremie Hakian; Gerard Mansell, SCS Global Services	
LCA Software:	openLCA v1.7.4	
Independent critical review of the LCA and data, according to ISO 14044 and ISO 14071	internal □ external	
LCA Reviewer:	Ilan MacAdam-Somer, SCS Global Services	
	T	
Product Category Rule:	Product Category Rule (PCR) for preparing an Environmental Product Declaration (EPD) for Flooring Carpet, Resilient, Laminate, Ceramic, Wood. NSF International. Version 2. 2014.	g:
PCR Review conducted by:	Jack Geibig, EcoForm. jgeibig@ecoform.com	
Independent verification of the declaration and data, according to ISO 14025 and the PCR	□ internal ⊠ external	
EPD Verifier:	Tom Gloria, Ph.D., Industrial Ecology Consultants	
	PRODUCT SCOPE	.cover
	ABOUT MILLIKEN CORPORATION	2
	PRODUCT DESCRIPTION	2
	PRODUCT APPLICATION	2
	PRODUCT APPLICATION PRODUCT PERFORMANCE	2 3 3
	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT	2 3 3
	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS.	2 3 3 3
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS. PRODUCT CHARACTERISTICS	2 3 3 4
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS.	2 3 3 4 5
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS PRODUCT CHARACTERISTICS LIFE CYCLE ASSESSMENT	2 3 3 4 5 5
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS PRODUCT CHARACTERISTICS LIFE CYCLE ASSESSMENT FUNCTIONAL UNIT	2 3 3 4 5 5
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS PRODUCT CHARACTERISTICS LIFE CYCLE ASSESSMENT. FUNCTIONAL UNIT PRODUCT LIFE CYCLE FLOW DIAGRAM.	2 3 3 4 5 5 5 5
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS PRODUCT CHARACTERISTICS LIFE CYCLE ASSESSMENT FUNCTIONAL UNIT PRODUCT LIFE CYCLE FLOW DIAGRAM LIFE CYCLE ASSESSMENT STAGES AND REPORTED INFORMATION	2 3 3 4 5 5 5 6 7
Declaration Contents:	PRODUCT APPLICATION PRODUCT PERFORMANCE MATERIAL CONTENT PRODUCTION OF MAIN MATERIALS PRODUCT CHARACTERISTICS LIFE CYCLE ASSESSMENT FUNCTIONAL UNIT PRODUCT LIFE CYCLE FLOW DIAGRAM LIFE CYCLE ASSESSMENT STAGES AND REPORTED INFORMATION LIFE CYCLE INVENTORY	2 3 3 4 5 5 5 6 7

Disclaimers: This EPD conforms to ISO 14025, 14040, 14044, and 21930:2007.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

ABOUT MILLIKEN

Milliken is a leading supplier of floor coverings, with a rich history or delivering dynamic carpet and luxury vinyl tile collections from its award winning design studios and manufacturing facilities around the globe. Combining global insight with national expertise and proprietary technologies, Milliken is at the forefront of innovation and design, offering high-performance, expertly-engineered products. Founded in 1865, Milliken has achieved an amazing 150 years in the textiles business and is now one of the largest privately owned companies in the world, providing expert solutions across a range of disciplines, including specialty chemicals, floor coverings, and performance materials. With over 100 years of environmental stewardship, the Milliken family of companies is one of the world's more responsible manufacturers.

Designing innovative products and solutions for our customers is of the utmost importance. Through meaningful design, deep science and unique insights, we advance product development to the next level, while supporting Milliken's efforts to increase sustainable results and minimise environmental impact of all products. Milliken's holistic approach to innovation encompasses all stages of the life cycle - from material sourcing and manufacturing practices to end-of-life management. Our commitment to transparency, health, safety, quality and sustainability allows us to put our customers, associates, and communities first. In 2020, Milliken was named one of the World's Most Ethical Companies by the Ethisphere Institute for the fourteenth year running.

PRODUCT DESCRIPTION

Homegrown, home sourced and homemade. Flexform Standard celebrates the beauty found in the simple things that sustain us; the elements rooted in our Earth that nourish and provide.

Proudly produced in the USA, Flexform Standard offers individually made-to-order styles featuring the best of product performance fused with desired aesthetic. Designing with Local Measure is easy — simply select a color and a platform that meets your needs. The result is a durable, solution-based LVT option that is budget-friendly and designer approved.

PRODUCT APPLICATION

Flexform Standard luxury vinyl flooring is used in various commercial and residential applications.

PRODUCT PERFORMANCE

Table 1. Product performance test results for Flexform Standard luxury vinyl tile product.

Test Item	Test Method	Results
Overall thickness	ASTM F386	Nominal ± 0.005in (± 0.127mm)
Wear-layer thickness	ASTM F410	0.020 in (0.5mm) minimum For Commercial use
Dimension	ASTM F2055	±0.016 in. per linear foot (± 0.406mm per linear meter)
Squareness	ASTM F2055	Maximum 0.010 in. (0.25mm)
Residual indentation	ASTM F1914	Average less than 8%
Flexibility	ASTM F137	1-in (25.4mm) mandrel No crack, No damage
Dimensional stability	ASTM F2199	0.020 in /ln-ft maximum
Curling after exposure to heat	EN ISO 23999	± 2mm (+0.5mm / - 1mm)
Chemical resistance	ASTM F925	No more than a slight change in surface dulling, surface attack, or staining
Resistance to light	ASTM F1515	ΔE < 8 ave MAX
Resistance to heat	ASTM F1514	ΔE < 8 ave MAX
Fire resistance	ASTM E648	Class 1 (0.45 w/Cm ² or more)
Smoke density	ASTM E662	450 or less
Static load limit	ASTM F970	0.005 in or less (0.127mm or less)
Indoor air quality	CDPH v1.1 (2017)	Low VOC, Floorscore® Certified

MATERIAL CONTENT

The material content of each product, including the material origin and its availability, is provided below. The percent of each material component is presented as a range, which varies depending on its thickness. The range shown is therefore representative of the product line, which is available in several thicknesses. The results in this EPD are based on a representative thickness, described in the product description and product characteristics sections, and is therefore based on a specific material content corresponding to that thickness.

Availability Percent of Origin of Recycled (% Component Materials Total Raw Renewable pre-/post-Materials Calcium carbonate, magnesium Mineral, Filler 40-45% 0%/0% Global carbonate, silicon dioxide abundant Binder Polyvinyl chloride 32-37% Fossil, limited 0%/0% Global 1,4-Benzenedicarboxylic acid, Fossil, limited Plasticizer 15-18% 0%/0% Global Bis(2-ethylhexyl) ester Fiberglass, continuous filament; Mineral, Fiberglass 2.0-4.0% Biogenic 0%/0% Global pulp, cellulose abundant Stabilizer Confidential 2.0-4.0% Fossil, limited 0%/0% Global Fossil, limited; Print Layer Polyvinyl chloride, ink 0%/0% Global 0.50-1.5% Mineral, Film abundant UV Coating & Confidential 0.50-1.5% 0%/0% Global Fossil, limited Additive Carbon black, polyvinyl chloride, Fossil, limited; bis(2-ethylhexyl) ester, calcium 0.10-0.30% 0%/0% Global Pigment Mineral, carbonate abundant TOTAL 100% 0%/0%

Table 2. Origin and availability of material content for Flexform Standard LVT.

In conformance with the PCR, product materials were reviewed for the presence of any hazardous chemicals. A review of Material Data Safety Sheets (MSDS) provided by the manufacturer reveals the presence of the following regulated chemicals in one or more of the products (this does not indicate that the threshold for reportable quantities is exceeded):

- Calcium carbonate (CAS# 471-34-1)
- Fiber Glass Continuous Filament (CAS# 65997-17-3)

PRODUCTION OF MAIN MATERIALS

Calcium Carbonate: An abundant mineral found world-wide, and a common substance found in rocks. It can be ground into varying particle sizes.

Plasticizer: Plasticizers are used to make vinyl soft and flexible. The plasticizers used in the products declared in this EPD include 1,4-Benzenedicarboxylic acid and Bis(2-ethylhexyl) ester.

Polyvinyl Chloride (PVC): Derived from fossil fuel and salt. Petroleum or natural gas is processed to make ethylene, and salt is subjected to electrolysis to separate out the natural element chlorine. Ethylene and chlorine are combined to produce ethylene dichloride, which is further processed into vinyl chloride monomer (VCM) gas. Finally, in polymerization the VCM molecule forms chains, converting the gas into fine, white powder—vinyl resin.

Stabilizers: Stabilizers are used to prevent the decomposition which occurs as PVC is heated to soften during the extrusion or molding process. Stabilizers also provide enhanced resistance to daylight, weathering and heat aging and have an important influence on the physical properties of PVC.

Fiberglass: Fiberglass is a fiber-reinforced plastic using glass fibers.

PRODUCT CHARACTERISTICS

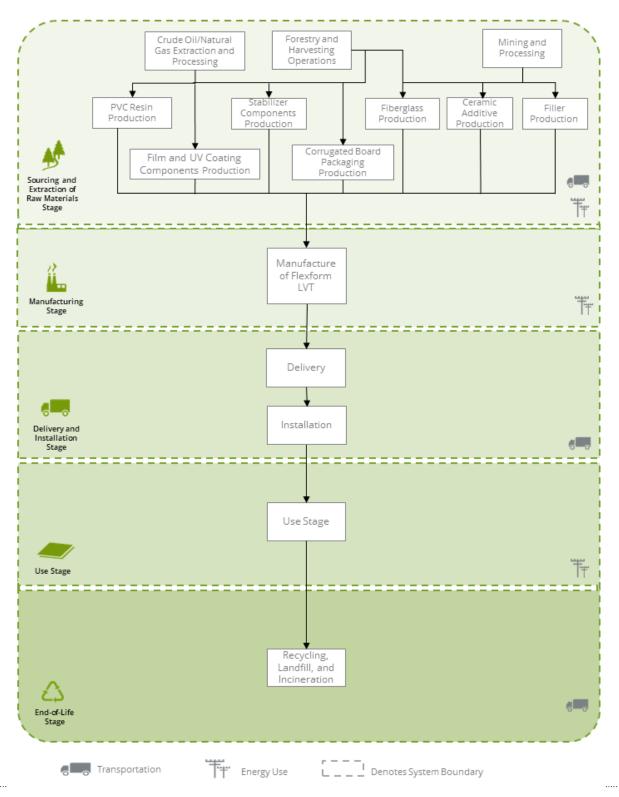
The representative nominal thickness for the Flexform Standard LVT is 5mm but is also available in 4mm.

Table 3. Product characteristics for Flexform Standard (5.0 mm).

С	haracteristi	с	Nominal Value	Unit	Maximum Value	Minimum Value
Dro	duct thickne		5.00	mm	5.15	4.85
PIC	duct triickrie	355	(0.197)	(in)	(0.203)	(0.191)
11/00	r lavar thiste		0.20	mm	0.90	0.18
vvea	Wear layer thickness		(0.0079)	(in)	(0.035)	(0.0071)
Dr	odust Majak	n+	8.23	kg/m²	9.23	7.40
PI	oduct Weigh	IL	(27.0)	(oz/ft²)	(30.2)	(24.3)
VOC em	VOC emissions test method		FloorScore®		=	
Sustair	nable Certific	ations	FloorScore®		-	
Product	Tiles	Width	152.40	mm	916.22	152.20
form	riies	Length	1,219.90	mm	1,507.01	456.59

LIFE CYCLE ASSESSMENT

A cradle to grave life cycle assessment (LCA) was completed for this product group in accordance with ISO 14040, ISO 14044, ISO 21930, and Product Category Rule for Environmental Product Declarations for Flooring: Carpet, Resilient, Laminate, Ceramic, Wood (Version 2).



FUNCTIONAL UNIT

The functional unit is, according to the PCR, the total impact for the expected life of the building (60 years). But the service life is dependent on the product lifetime, which is 30 years in this case. The PCR consequently requires separate reporting of LCA results A) for 1 m² of floor covering - extraction/processing, manufacturing, delivery and installation and end of life, B) the average 1- year use stage, and C) for the 60-year life of the building as combined using A) and B), calculated from the reference service life (RSL) of the product.

PRODUCT LIFE CYCLE FLOW DIAGRAM

The diagrams below are a representation of the most significant contributions to the life cycle of Flexform Standard luxury vinyl flooring. This includes resource extraction and processing, product manufacture, use and maintenance, and end-of-life.

LIFE CYCLE ASSESSMENT STAGES AND REPORTED INFORMATION

Sourcing/Extraction Stage (raw material acquisition)

This stage includes extraction and processing of raw materials used for packaging and the manufacturing of luxury vinyl flooring, including delivery of these material components to the production site.

Manufacturing Stage

This stage includes all the relevant manufacturing processes and flows, including the impacts from energy use, emissions, and wastes at the facility. Production of capital goods, infrastructure, manufacturing equipment, and personnel-related activities are excluded.

Delivery and Installation Stage

Delivery

This stage includes the delivery of the flooring product to the point of installation. Modeling used in the life cycle assessment assumed an estimated distribution distance to point of sale of 1,600 kilometers (994 miles) via diesel truck, representing transport from the manufacturing facility in Fostoria, Ohio to various locations across the United States.

Installation

The manufacturer provides recommended installation guidance on the web: https://floors.milliken.com

Waste

Waste generated during product installation can be disposed of in a landfill, incinerated, or recycled.

Packaging

Table 4. Origin and availability of material content for the product packaging.

Packaging Materials							
			Percent		Availability		Origin of
Component	Materials	Amount (kg/m²)	of Total (%)	Renewable	Non- renewable	Recycled (% pre-/post- consumer)	Raw Materials
Box	Corrugated board	0.270	100%	Biogenic	Fossil, limited	0%/0%	Global
TOTAL	· ·	0.270	100%	-	-	0%/0%	-

Use Stage

Cleaning and maintenance

Table 2. Cleaning and maintenance for luxury vinyl flooring products.

Classing Busses	Cleaning F	requency / Tra	ffic Level	Method	
Cleaning Process	Light	Moderate	Heavy	wetnoa	
Daily Maintenance*	208 days/year	156 days/year	0 days/year	Sweep and mopping (3 oz neutral cleaner/gal water or 23 mL neutral cleaner/ L water)	
Routine Cleaning	52 days/year	104 days/year	260 days/year	Sweep and clean with auto scrubber (3 oz neutral cleaner/gal water or 23 mL neutral cleaner/ L water)	

^{*}Based on working days per year minus the days for routine cleaning.

End-of-Life Stage

Recycling, reuse, or repurpose

Data for the estimation of recycling rates for the product and packaging are based on data prepared by the US Environmental Protection Agency's Municipal Solid Waste Report. These data provide 2014 statistics on US disposal, including recycling rates.

Table 6. Recycling rates based on 2014 US EPA Municipal Solid Waste statistics.

Material	Durable Goods	Packaging
Paper and paperboard	N/A	75.4%

Disposal

For disposal of product materials, it is assumed that 20% are incinerated and 80% go to a landfill, based on the US EPA data. Transportation of waste materials at end of life assumes a 32 kilometer (20 mile) average distance to disposal, consistent with assumptions used in the US EPA WARM model.

LIFE CYCLE INVENTORY

In accordance with ISO 21930:2007, the following aggregated inventory flows are included in the LCA, in addition to the LCIA and inventory flow requirements specified by the PCR:

- Use of renewable material resources
- Use of non-renewable material resources
- Consumption of freshwater
- Hazardous Waste
- Non-hazardous Waste

All results are calculated using the openLCA v1.7.4 model using primary and secondary inventory data. Classification for the use of material resources is based on a review of materials in the foreground system.

Table 7. Aggregated inventory flows, shown in kg per 1 m^2 of Flexform Standard flooring maintained for 60 years.

Parameter	Units	Sourcing and Extraction	Manufacturing	Delivery and Installation	Use	End of Life	Total
Total Primary Energy Cons	umption						
Non-renewable energy resources	MJ	580	110	65	282	6.1	1,000
Renewable primary energy	MJ	17	2.4	0.86	74	0.28	95
Material Resources Consur	mption						
Non-renewable material resources	kg	16	0.0	Neg	1.0	Neg	17
Renewable material resources	kg	0.56	0.0	Neg	Neg	Neg	0.56
Freshwater	m ³	4.2	0.55	4.2x10 ⁻²	4.5	1.9x10 ⁻²	9.3
Waste Generated							
Hazardous waste	kg	1.8x10 ⁻⁴	1.8×10 ⁻⁴	4.2x10 ⁻⁵	4.9x10 ⁻⁴	1.8x10 ⁻⁵	9.1x10 ⁻⁴
Non-hazardous waste	kg	3.1	1.9	3.4	2.4	30	41

Neg = Negligible

LIFE CYCLE IMPACT ASSESSMENT

The impact assessment for the EPD is conducted in accordance with requirements of the PCR. Impact category indicators are estimated using the CML-IA (Table 8 through Table 10) and TRACI 2.1 (Table 11 through Table 13) characterization methods. Aggregated inventory flows for energy use are also calculated. The LCIA and inventory flow results are calculated using openLCA v1.7.4 software and declared in this EPD in the following ways:

- **Table A:** The potential impacts for 1 m² of floor covering for each of the following life cycle stages: sourcing/extraction, manufacturing, delivery and installation, and end of life. The impacts are not normalized to the 60-year reference service life of the building.
- **Table B:** The impacts for the use stage for 1 m² of floor covering for an average one-year use.
- **Table C:** The total impacts of all life cycle stages based on the estimated replacement schedule for 1 m² of floor covering over a 60-year reference service life of a building.

Table 8. Table A: Cradle to install and end of life LCIA results for 1 m^2 of Flexform Standard flooring (5.0 mm). Results are calculated using CML-IA.

Impact Category	Units	Sourcing and Extraction	Manufacturing	Delivery and Installation	End of Life	Total
Abiotic Depletion Potential	kg Sb eq	1.5x10 ⁻⁵	6.5x10 ⁻⁷	6.8x10 ⁻⁶	3.4x10 ⁻⁷	2.2x10 ⁻⁵
(Elements)		65%	2.9%	30%	1.5%	100%
Abiotic Depletion Potential	MJ	340	39	34	3.3	420
(Fossil Fuels)	9	82%	9.3%	8.1%	0.79%	100%
Global Warming Potential	kg CO2 eq	16	4.4	2.3	5.1	28
Global Walfilling Foteritial	kg CO2 eq	58%	16%	8.3%	18%	100%
Ozona Donlation Datastial	la CEC 11 oc	8.3x10 ⁻⁷	2.6x10 ⁻⁷	4.1x10 ⁻⁷	3.3x10 ⁻⁸	1.5x10 ⁻⁶
Ozone Depletion Potential	kg CFC-11 eq	54%	17%	27%	2.2%	100%
Photochemical Oxidant	lya C-H. oa	4.5x10 ⁻³	6.9x10 ⁻⁴	3.8x10 ⁻⁴	9.1x10 ⁻⁴	6.5x10 ⁻³
Formation Potential	kg C₂H₄ eq	69%	11%	5.9%	14%	100%
Acidification Detential	l/2 CO . 22	5.6x10 ⁻²	1.5x10 ⁻²	8.9x10 ⁻³	1.5x10 ⁻³	8.2x10 ⁻²
Acidification Potential	kg SO ₂ eq	68%	19%	11%	1.9%	100%
Futranhisation Datastial	La DO 3- 00	1.3x10 ⁻²	7.5x10 ⁻³	2.2x10 ⁻³	1.7x10 ⁻²	4.0x10 ⁻²
Eutrophication Potential	kg PO ₄ 3- eq	33%	19%	5.4%	43%	100%
Primary Energy, Non-	N 41	290	54	32	3.1	380
Renewable	MJ	76%	14%	8.5%	0.80%	100%
Primary Enorgy Panawahla	N A I	8.7	1.2	0.43	0.14	10
Primary Energy, Renewable	MJ	83%	11%	4.1%	1.3%	100%

Table 3. Table C: Cradle to grave impacts over 60-year building service life for 1 m^2 of Flexform Standard flooring (5.0 mm). Results are calculated using CML-IA.

Impact Category	Units	Sourcing and Extraction	Manufacturing	Delivery and Installation	Use	End of Life	Total
Abiotic Depletion	kg Sb eq	2.9x10 ⁻⁵	1.3x10 ⁻⁶	1.4x10 ⁻⁵	1.1x10 ⁻⁴	6.8x10 ⁻⁷	1.6x10 ⁻⁴
Potential (Elements)	16 20 cd	19%	0.83%	8.6%	72%	0.43%	100%
Abiotic Depletion	MJ	680	78	68	330	6.6	1,200
Potential (Fossil Fuels)	IVIJ	59%	6.7%	0.57%	28%	0.57%	100%
Global Warming	kg CO- 00	32	8.7	4.6	25	10	80
Potential	kg CO₂ eq	40%	11%	5.7%	31%	13%	100%
Ozone Depletion	kg CFC-11	1.7x10 ⁻⁶	5.2x10 ⁻⁷	8.2x10 ⁻⁷	3.8x10 ⁻⁶	6.7x10 ⁻⁸	6.8x10 ⁻⁶
Potential	eq	24%	7.7%	12%	55%	0.98%	100%
Photochemical Oxidant	lva C H oa	9.0x10 ⁻³	1.4x10 ⁻³	7.6×10 ⁻⁴	6.8x10 ⁻³	1.8x10 ⁻³	2.0x10 ⁻²
Formation Potential	kg C₂H₄ eq	45%	7.0%	3.9%	34%	9.2%	100%
Asidification Detential	la CO aa	0.11	3.1x10 ⁻²	1.8x10 ⁻²	0.13	3.1x10 ⁻³	0.30
Acidification Potential	kg SO ₂ eq	38%	10%	6.0%	45%	1.1%	100%
Eutrophication Potential	kg PO ₄ 3- eq	2.7x10 ⁻²	1.5x10 ⁻²	4.3x10 ⁻³	5.0x10 ⁻²	3.5x10 ⁻²	0.13
Eutrophication Potential	kg PO4° eq	20%	11%	3.3%	38%	27%	100%
Primary Energy, Non-	N.41	580	110	65	280	6.1	1,000
Renewable	MJ	56%	10%	6.2%	27%	0.59%	100%
Primary Energy,	N.41	17	2.4	0.86	74	0.28	95
Renewable	MJ	18%	2.5%	0.90%	78%	0.30%	100%

Table 10. Table B: Average 1-year use stage impacts for 1 m^2 of Flexform Standard luxury vinyl flooring product. Results are calculated using CML-IA.

Impact Category	Units	Average 1-year Use and Maintenance Impacts
Abiotic Depletion Potential (Elements)	kg Sb eq	2.6x10 ⁻⁶
Abiotic Depletion Potential (Fossil Fuels)	MJ	5.6
Global Warming Potential	kg CO ₂ eq	0.32
Ozone Depletion Potential	kg CFC-11 eq	6.3x10 ⁻⁸
Photochemical Oxidant Formation Potential	kg C ₂ H ₄ eq	1.2x10 ⁻⁴
Acidification Potential	kg SO₂ eq	2.2x10 ⁻³
Eutrophication Potential	kg PO ₄ ³⁻ eq	1.1x10 ⁻³
Primary Energy, Non-Renewable	MJ	4.7
Primary Energy, Renewable	MJ	1.2

Table 11. Cradle to install and end of life LCIA results for 1 m^2 of Flexform Standard luxury vinyl flooring product. Results are calculated using TRACI 2.1.

Impact Category	Units	Value
Ozone depletion	kg CFC-11 eq	2.0x10 ⁻⁶
Global warming	kg CO ₂ eq	27
Smog	kg O₃ eq	1.2
Acidification	kg SO₂ eq	8.5x10 ⁻²
Eutrophication	kg N eq	8.8x10 ⁻²
Fossil fuel depletion	MJ surplus	54

10

Table 12. Cradle to grave impacts over 60-year building service life for 1 m² of Flexform Standard luxury vinyl flooring product. Results are calculated using TRACI 2.1.

Impact Category	Units	Value
Ozone depletion	kg CFC-11 eq	8.2x10 ⁻⁶
Global warming	kg CO₂ eq	77
Smog	kg O₃ eq	3.7
Acidification	kg SO ₂ eq	0.30
Eutrophication	kg N eq	0.28
Fossil fuel depletion	MJ surplus	140

Table 13. Average 1-year use stage impacts for 1 m^2 of Flexform Standard luxury vinyl flooring product. Results are calculated using TRACI 2.1.

Impact Category	Units	Average 1-year Use and Maintenance Impacts
Ozone depletion	kg CFC-11 eq	6.9x10 ⁻⁸
Global warming	kg CO ₂ eq	0.40
Smog	kg O₃ eq	2.1x10 ⁻²
Acidification	kg SO ₂ eq	2.2x10 ⁻³
Eutrophication	kg N eq	1.7x10 ⁻³
Fossil fuel depletion	MJ surplus	0.56

SUPPORTING TECHNICAL INFORMATION

Allocation

For the raw material supply and all secondary datasets used for this LCA study, processes were modelled using the cut-off system model of Ecoinvent v3.4 database.

For the transport stage, impacts were allocated based on the mass of the material and distance transported to each facility.

This study follows the allocation guidelines of ISO-14044 and allocation rules specified in the PCR and sought to minimize the use of allocation wherever possible. For the manufacturing stage, mass allocation was deemed the most accurate and reproducible way of calculating resource use, emissions, and wastes. Primary data for resource use (e.g., electricity, natural gas, water, etc.), waste, and emissions released at the facility were allocated to the product on a mass-basis as a fraction of total annual production.

Cut-off criteria

According to the PCR, processes contributing greater than 1% of the total environmental impact indicator for each impact must be included in the inventory. In the present study, except as noted, all known materials and processes were included in the life cycle inventory.

Data Sources

Unit processes are developed with openLCA v1.7.4 software, drawing upon data from multiple sources. Primary data were provided by the manufacturer for their manufacturing processes. The primary sources of secondary LCI data are from Ecoinvent, Overcash, and PlasticsEurope Eco-profiles.

Table 14. Data sources used for the LCA study.

Flow	Dataset	Data Source(s)	Publication Date
Product Mate	erials		
PVC resin	Polyvinylchloride, emulsion polymerised {RoW} polyvinylchloride production, emulsion polymerisation Alloc Rec, U	Ecoinvent	2017
Plasticizer	2-ethylhexyl phthalate (DEHP) {GLO} market for Alloc Rec U	Ecoinvent; Overcash	2017; 2004
Stabilizer	chemical production, organic chemical, organic Cutoff, U - GLO	Ecoinvent	2017
Pigment	Carbon black {GLO} production Alloc Rec, U	Ecoinvent	2017
Filler	Limestone, crushed, for mill {GLO} market for Alloc Rec, U	Ecoinvent	2017
Print Layer Film	polyvinylchloride production, emulsion polymerisation polyvinylchloride, emulsion polymerised Cutoff, U - RoW	Ecoinvent	2017
Binder	polyvinylchloride production, emulsion polymerisation polyvinylchloride, emulsion polymerised Cutoff, U - RoW	MSDS; Ecoinvent	2017
UV Coating	Polyurethane {RoW} production Alloc Rec U	SCS; Ecoinvent	2017
Additive	silica sand production silica sand Cutoff, U - RoW	Ecoinvent	2017
Fiberglass	market for glass fibre reinforced plastic, polyester resin, hand lay-up glass fibre reinforced plastic, polyester resin, hand lay-up Cutoff, U – GLO; market for kraft paper, unbleached kraft paper, unbleached Cutoff, U - GLO	Ecoinvent	2017
Installation			
Adhesive	Acrylic binder, without water, in 34% solution state {GLO} market for Alloc Rec, U	Ecoinvent	2017
Maintenance			
Cleaner	Chemical, organic {GLO} market for Alloc Rec, U; Citric acid {GLO} market for Alloc Rec, U; Sodium hydroxide, without water, in 50% solution state {GLO} market for Alloc Rec, U; Sodium sulfite {GLO} market for Alloc Rec, U; Water, deionised, from tap water, at user {GLO} market for Alloc Rec, U	MSDS; Ecoinvent	2017
Electricity	market group for electricity, low voltage electricity, low voltage Cutoff, U - US	Ecoinvent	2017
Water	Tap water {RoW} market for Alloc Rec, U	Ecoinvent	2017
Manufacturin	ng		
Electricity	Electricity, medium voltage, at grid/RFCW 2016 U	eGRID; Ecoinvent	2018; 2017
Propane	market for propane, burned in building machine propane, burned in building machine Cutoff, U - GLO	Ecoinvent	2017
Packaging			
Cardboard box	Corrugated board box {RoW} production Alloc Rec, U	Ecoinvent	2017
Transportation	on		
Truck	Transport, freight, lorry 16-32 metric ton, EURO4 {GLO} market for Alloc Rec, U	Ecoinvent	2017
Truck (disposal)	Transport, freight, lorry 16-32 metric ton, EURO4 {GLO} market for Alloc Rec, U	Ecoinvent	2017
Ship	Transport, freight, sea, transoceanic ship {GLO} market for Alloc Rec, U	Ecoinvent	2017

Data Quality

Data Quality Parameter	Data Quality Discussion	
Time-Related Coverage Age of data and the minimum length of time over which data is collected	The most recent available data are used, based on other considerations such as data quality and similarity to the actual operations. Typically, these data are less than 10 years old. All the primary data used represented an average of one year's worth of data collection. Manufacturer-supplied data are based on calendar year 2017.	
Geographical Coverage Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Actual processes for upstream operations are primarily in the Republic of Korea and the United States, while downstream processes are primarily in the United States. Representative data used in the assessment are representative of US, Global, or "Rest-of-World" (average for all countries in the world with uncertainty adjusted). Datasets chosen are considered sufficiently similar to actual processes.	
Technology Coverage Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative datasets, specific to the type of material or as a proxy, are used to represent the actual processes where primary data were not available.	
Precision Measure of the variability of the data values for each data expressed (e.g., variance)	Precision of results are not quantified due to a lack of data. Manufacturer data, and representative data used for upstream processes were typically averaged for one or more years and over multiple operations, which is expected to reduce the variability of results.	
Completeness Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of luxury vinyl flooring. In some instances, surrogate datasets used to represent upstream processes may be missing some data which is propagated in the model. Missing data represent less than 5% of the mass or energy flows.	
Representativeness Qualitative assessment of the degree to which the data set reflects the true population of interest (i.e., geographical coverage, time period and technology coverage)	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.	
Consistency Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent data where available. Different portions of the product life cycle are equally considered.	
Reproducibility Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.	
Sources of the Data Description of all primary and secondary data sources	Data representing energy use at the manufacturing facility represent an annual average and are considered of good quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. A mass and energy balance check were completed during the data collection period. For secondary LCI datasets, Ecoinvent, Overcash, and PlasticsEurope Eco-profiles databases are used, with a bias towards Ecoinvent data.	
Uncertainty of the Information Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the luxury vinyl flooring is low, while uncertainty related to the type of packaging materials used is relatively high. Primary data for upstream processes were not available; as such, the study relied upon use of existing representative datasets for these cases. These representative datasets contained relatively recent data (~10 years, or more recent), but in some instances lacked perfect geographical and technological representativeness. Uncertainty related to the impact assessment methods used in the study are relatively high since they lack characterization of thresholds or tipping points.	

REFERENCES

- 1. ISO 14025: 2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures
- 2. ISO 14040: 2006/Amd 1:2020 Environmental Management Life cycle assessment Principles and Framework
- 3. ISO 14044: 2006/Amd 1:2017/ Amd 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 4. Oers, L. van (2015). CML-IA database, characterisation and normalisation factors for midpoint impact category indicators. Center of Environmental Science of Leiden University. CML-IA. http://cml.leiden.edu/software/datacmlia.html
- 5. Overcash, M. LCI gate-to-gate database, Department of Chemical and Biomolecular Engineering, NCSU, Raleigh, NC, 1998-2004.
- 6. PlasticsEurope Eco-profiles. http://www.plasticseurope.org/en/resources/eco-profiles
- 7. Product Category Rule (PCR) for preparing an Environmental Product Declaration (EPD) for Flooring: Carpet, Resilient, Laminate, Ceramic, Wood. NSF International. Version 2. 2014. Extended June 2020.
- 8. SCS Global Services. Life Cycle Assessment of Luxury Vinyl Flooring. April 2019. Final Report. Prepared for client.
- 9. SCS Type III Environmental Declaration Program: Program Operator Manual v10.1. May 2021. SCS Global Services
- 10. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). Dr. Bare, J., https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci
- 11. US EPA. Advancing Sustainable Materials Management: 2014 Fact Sheet. Assessing Trends in Material Generation, Recycling, and Disposal in the United States. November 2015.
- 12. US EPA. WARM Model Transportation Research Draft. Memorandum from ICF Consulting to United States Environmental Protection Agency. September 7, 2004. http://epa.gov/epawaste/conserve/tools/warm/SWMGHGreport.html#background.
- 13. Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Available at: http://link.springer.com/10.1007/s11367-016-1087-8

For more information, contact:

Milliken

920 Milliken Road Spartanburg, SC 29303 United States +1-800-241-4826 | https://floors.milliken.com

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.50.452.8000 | fax +1.510.452.8001